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Abstract. The long-wavelength-limit structure factor of liquid alkali metals is investigated 
using the mean-density approximation. The one-component classical plasma model is used 
as the unperturbed reference system. It is shown that a consistent description of the long- 
wavelength-limit structure factor and the overall structure factor as well as the thermo- 
dynamics can be achieved to some degree using the reduced plasma parameter. 

The one-component classical plasma (OCP) is a system of point particles, each carrying 
a charge Z,e and moving in a uniform neutralising background. The system is charac- 
terised by the plasma parameter r, = (Z,e)2/akBT, where a = (3/4nn)'j3 is the ion 
sphere radius with density n and Tis the temperature. The use of the Gibbs-Bogoliubov 
variational method with the OCP reference system in the thermodynamic calculation of 
liquid alkali metals tells us that the magnitude of the plasma parameter r,of the reference 
system is significantly smaller than that (r = (Ze)2/akBT) fixed by the real charge Z 
carried by the ion core [l-31. Although the free energy minimum is so shallow that we 
cannot determine the optimum value of the plasma parameter accurately [2, 31, the 
magnitude of the apparent charge 2, of the OCP reference system is definitely smaller 
than that of the bare ionic charge 2. Furthermore the analysis of the structure factor of 
liquid alkali metals reveals the same tendency [4,5]. The overall form of the structure 
factor is well approximated by the OCP, with the reduced plasma parameter, in the 
thermodynamic calculation. In contrast, the compressibility and the long-wavelength- 
limit structure factor S(O), within the random-phase approximation (RPA), are well 
explained by the plasma parameter r corresponding to the real charge Z [5 ,6] .  Thus the 
consistent description of the various properties of liquid alkali metals using the single 
plasma parameter rr is not possible. 

In order to resolve this problem, Yokoyama [7] has proposed an improvement on 
the RPA. By decreasing the number of valence electrons artificially so as to compensate 
for the deficit of the apparent core charge Z - Z,, Yokoyama was able to reproduce well 
the long-wavelength-limit structure factor from the RPA formula. Although his theory, 
which we call the modified RPA (MRPA) hereafter, reproduced the experimental com- 
pressibility rather well, the physical meaning of the artificial reduction of the valence 
electron number is unclear. Instead of this artificial trick, we show in this paper that by 
using the mean-density approximation (MDA), which is considered to be exact in the 
long-wavelength limit [8], as well as the recently proposed dielectric screening function 
[9], we can obtain a physically appealing result. 
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Using the standard lowest-order pseudopotential perturbation theory, the inter- 
atomic pair potential is written as the sum of the repulsive core-core Coulomb potential 
and the electron-mediated screening potential: 

Q,W = ( W 2 / r  + Q,,sc(r>* (1) 
When applying the mean-density-approximation (MDA) theory of the structure factor of 
liquid we start by dividing the given inter-atomic potential (1) into the unperturbed 
(reference) potential q a ( r )  and the perturbation Q, l(~). The separation is not specified 
within the theory [8,10]. When we use the hard-sphere (HS) potential as the reference 
potential, we normally employ the so-called WCA prescription [ 111. When we consider 
a 'soft' potential, such as the Coulomb potential of the OCP, as the reference potential, 
we find that no prescription is available as yet. Use of the RPA-that is, a simplified 
version of the MDA-involves using the separation given by equation (1). 

Instead of this, we follow the idea of the Gibbs-Bogoliubov variational calculation 
[ 12-14], and we put 

The thermodynamic variational calculation starts from this separation and the free 
energy is minimised with respect to the reference plasma parameter Tr = (Zre)2/akBT 
corresponding to the apparent charge 2, of the reference OCP system. 

We use the above separation in our analysis of the structure factor [13,14]. Within 
the MDA the low-angle structure factor &DA(q) reads 

where Socp(q) is the structure factor of the OCP reference system described by the 
pair potential (2a) with the apparent charge Z,. q l ( q )  is the Fourier transform of the 
perturbation potential (2b), and P is the inverse of the temperature. It should be noted 
that the perturbation potential consists of two parts. 

The RPA truncates the last term involving the density derivative (MDA term) in (3). 
The long-wavelength limit of the OCP structure factor SoCp(q) is known analytically [6]. 
The perturbation Q, l (q), equation (2b), may be calculated and the long-wavelength limit 
may be taken if we know the pseudopotential and the screening function. We use the 
simple Ashcroft pseudopotential with core radius [6] , and the Ichimaru-Utumi (IU) 
screening function [9]. In the limit q + 0, the divergent terms cancel out, and we get [5]  

l/Sp,pA(O) = 1 - T , X $ / ~  + kbrz + k&/k: (4) 

where 

k$ = 4 ~ ~ n ( Z e ) ~ / k ~ T  

is the Debye-Huckel inverse screening length, k, is the inverse screening length of the 
electron gas [9] and r, is the core radius of the Ashcroft pseudopotential [6]. x i  is 
obtained from the compressibility of the OCP derived from the expression for the free 
energy [5,61 

( 5 )  x 2  - 0 -  - l$br;3/4 - Ycr;5/4 - 2dr-1 

where a = -0.897744, b = 0.95043, c = 0.18956, and d = -0.81487 [16]. The 
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expression for SRPA(0), equation (4), depends sensitively on the choice of the core radius 
rc and the screening function through k,. 

It should be noted that in equation (4) the first two terms are derived from the 
reference system and are therefore calculated using the reduced ionic charge Z,, whilst 
the last two terms are from the screening potential qsc ( r )  and should be calculated with 
the original real valence 2. 

In the traditional RPA [5,  61 we set Z, = Z. In the MRPA 171, we use the reduced Z,, 
corresponding to rr = 155, which fits the experimental structure factor near melting 
quite well, and we further reduce the real valence Z artificially to 2, in the last two terms 
in (4), thus modifying kD and k,. 

The results of straightforward application of equation (4) are not encouraging if we 
use the reduced Z,, which is consistent with the thermodynamic variational calculation 
or the structure analysis, as shown in table 1, where we set Tr = 155 arbitrarily as in [77. 
Therefore we should inevitably take into account the MDA term 

We have used the fact that in the OCP structure factor Socp(ka, r,) the momentum 
transfer is scaled as ka. Since the perturbation potential ql(k)  consists of two terms, 
equation (2b)-one from the screening potential qsc ( r )  and the other from the residual 
Coulomb potential-the MDA term is divided into two terms Zl(0) and Z2(0). Therefore 
we have 

1/&DA(O) = 1 /SwA(O)  + 11 (0) + I z ( 0 ) .  (7) 

Since the screening potential qsc(q) can be expressed in terms of the energy-wave- 
number characteristics G,(q) [3, 131, Zl(0) is written as 

where it is understood that the energy-wavenumber characteristics G,(q) are kept 
constant as the density is varied to allow us to calculate the derivative numerically [ll]. 
In order to improve the convergence of the numerical integration, we have added a 
constant term as in [Ill. Z2(0) is written as 

Direct numerical integration of this term is difficult because of the long-ranged nature 
of the integrand. This can be bypassed in the following way: firstly, noting that a is 
related to the density, we interchange the order of taking the integral performing the 
partial differentiation, then integration is performed and is expressed in terms of the 
excess internal energy of the OCP. Finally we express the partial differentiations with 
respect to the density in terms of those with respect to the plasma parameter: 

Zz(O) = 8(r - r , ) [ ( ~ ,  a/ar,  + rj a2/ar3)pU(r,)/rr + WU(r,)/r,]. 
U(T,) is the excess internal energy of the OCP with the plasma parameter T,. Using the 
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analytic expression for the internal energy fitted to the Monte Carlo simulation [ 161, we 
have 

1~(0) = b(r - rr)(2a + - & ~ r ; ~ / ~ ) .  (9) 

The constants a, b and c are the same as in equation (5) .  
The results from the calculation using these MDA terms are given in table 1. Again 

we set rr = 155 in order to allow comparison with the RPA and the MRPA calculations. 
This value is known to give an OCP structure factor and an entropy that are close to the 
experimental values [4, 5, 141. Therefore the choice is in qualitative accord with the 
variational theory which should give a realistic structure factor and thermodynamic 
quantities [l]. 

In order to calculate the integral in (8), we approximate the OCP structure factor 
using the analytic expression for the structure factor of the charged hard spheres (CHS) 
obtained using the mean-sphere approximation [17, 181, The hard-sphere diameter of 
the CHS is fixed by the prescription of Singh [MI, which seems most appropriate and 
simplest since it is directly fitted to the direct correlation function of the OCP structure 
factor obtained from the simulation. 

From table 1 we see that the MDA term is not as important as suggested by Young 
[13], and is of the same magnitude as that calculated by Ono and Yokoyama [2] using a 
different approximation to the structure factor of the OCP and to the screening function 
[19]. Although the MDA term I,@) + 12(0) is small compared with l/&pA(O), the final 
result for the SMDA(0) is reasonable and the degree of the agreement with experiment is 
almost the same as that achieved using the existing RPA [5,6] or MRPA [7] calculation. 

We now comment on the RPA [5,6] and the MRPA [7] calculations. Firstly, using the 
RPA and setting rr = r is not appropriate since the inclusion of the higher-order MDA 
term worsens the final result, SMDA(O), as shown in table 2. A small difference in the 
SRpA(0) from those reported in [5] (table 1) and [6] is due to the use of a different 
screening function [20] and a different core radius Y,. It should be noted, however, that 
from the definition of the perturbation potential, equation (2b), Z2(0) is identically zero 
and the MDA term is less important than SRpA(O) when T r  = r. The RPA term SRPA(0) and 
the MDA term are complementary and a delicate balance of these two terms determines 
SMDA(0). The physical meaning of the assumption used in the MRPA is unclear and seems 
not to be soundly based. The good final result obtained from using the MRPA seems to 
be not only due to the artificial assumption but also to a happy combination of the choice 
of the r, and the screening function [21]. 

The value of the plasma parameter T,of the reference OCP system should be calculated 
by a variational calculation. However, the previous analysis did not show rr = 155; 
instead smaller values were predicted [2, 31 even though the authors had used either a 
different core radius Y, or a different screening function. We did the thermodynamic 
variational calculation again using the core radius r, used here [6] and the Ichimaru- 
Utumi screening function [9]. The band structure energy was calculated approximately 
using the CHS structure factor as used here [HI. The values of the optimum rr are 90, 
115,126,125,137 for Li to Cs respectively. They are on the whole smaller than the value 
of 155 used here. However, since the minimum is shallow and accurate determination 
of rr is difficult, our approximation rr = 155 is not unreasonable. 

In order to check further on the importance of the MDA term, we have calculated 
S(0) for the expanded fluid rubidium (Rb). In table 3 we show the calculated values of 
SMDA(0) together with the experimental values compiled by Evans and Sluckin [6] 
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Table 2. The long-wavelength-limit structure factor SMDA(O) calculated from the mean- 
density approximation (MDA) by setting r, = r. The input data are the same as in 
table 1. Note that Zz(0) is identically zero. The experimental values of Se,,(0) are the same 
as in table 1. 

Li 0.0237 -9.80 0.0308 (0.026) 
Na 0.0222 -8.21 0.0271 0.0240(0.0233) 
K 0.0238 -4.36 0.0265 0.0247(0.0225) 

Cs 0.0243 -2.21 0.0257 0.026(0.0237) 
Rb 0.0256 -4.33 0.0289 (0.0220) 

and using their RPA calculation, setting 
magnitude of the plasma parameter as suggested in [ 5 ]  by using the formula 

= r. In our MDA calculation we reduce the 

r, = r,(Ts/T)(n/n,)1/3. 

Subscript s indicates the standard state, which we choose to be the state of the first row 
of table 3 ,  and we determine the standard plasma parameter Ts so as to fit SMDA(0) to 
the experimental value S(0 )  for the standard state. We see that with use of the above 
scaling formula for the reference system, we can reproduce well the experimental S(0). 
The MDA seems better than the RPA for a wider range of the temperature and the density. 

We have shown in this paper that the proper inclusion of the perturbation potential 
for the MDA formula of the long-wavelength-limit structure factor S(0)  is important for 
the OCP reference systems. We show that a consistent description of the long-wavelength 
structure factor using the mean-density approximation and of the thermodynamics using 
the Gibbs-Bogoliubov variational theory is theoretically achievable. Unfortunately, a 
consistent value for the plasma parameter cannot be found, but this should be resolvable 

Table 3. The long-wavelength-limit structure factor SMDA(0)  of expanded Rb as calculated 
from the MDA. Experimental values of S,,,(o) as well as from the RPA calculation SRPA(0) are 
taken from table 2 of [ 6 ] .  

~~ 

n T 
( ~ o ~ A - ~ )  (K) r, SMDA(O) r SRPA(O) Sexp(0 )  

9.74 573 78.0 0.045 100.4 0.056 0.045 
9.27 723 60.9 0.065 78.3 0.081 0.070 
8.80 873 49.5 0.091 63.7 0.115 0.10 
8.32 1023 41.5 0.126 53.3 0.164 0.13 
7.81 1173 35.4 0.173 45.6 0.242 0.18 
7.29 1323 30.7 0.242 39.5 0.389 0.24 
6.73 1473 26.8 0.358 34.5 0.771 0.37 
6.34 1573 24.6 0.486 31.7 1.81 0.51 
6.12 1623 23.6 0.588 30.3 5.94 0.57 
5.90 1673 22.6 0.725 29.1 - 0.67 
5.66 1723 21.6 0.946 27.9 - 0.72 
5.42 1773 20.7 1.29 26.7 - 0.79 
5.14 1823 19.8 2.13 25.5 - 0.94 
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by using a more accurate approximation to the structure factor of the OCP and/or by 
using non-local pseudo-potentials [13]. Our formalism should also be useful for long 
wavelengths and finite wavenumber. 
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